- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0003000002000000
- More
- Availability
-
05
- Author / Contributor
- Filter by Author / Creator
-
-
Hu, Hui (5)
-
Samad, Abdallah (5)
-
Dhulipalla, Anvesh (4)
-
Hu, Haiyang (1)
-
Kumar, Amrit (1)
-
Sista, Harsha (1)
-
Valentin, Carlos A (1)
-
Wang, Jincheng (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 16, 2026
-
Samad, Abdallah; Dhulipalla, Anvesh; Hu, Hui (, Experimental Thermal and Fluid Science)Free, publicly-accessible full text available July 1, 2026
-
Samad, Abdallah; Dhulipalla, Anvesh; Hu, Hui (, AIAA Journal)An experimental study was conducted to compare various strategies for UAV propeller icing mitigation. With a propeller model with an untreated hydrophilic blade as the comparison baseline, three icing protection systems (IPSs) were evaluated systematically: 1) a passive method with the propeller blade coated with a super-hydrophobic surface (SHS) coating; 2) an active IPS design to forcefully heat the entire blade surface; and 3) a hybrid IPS design with only limited surface heating along the blade leading edge and the SHS-coated blade. While the passive method with the SHS-coated blade was found to be only marginally effective under the glaze icing condition, it became ineffective or even further deteriorated the propeller performance under the mixed and rime icing conditions. While the active IPS design to forcefully heat the entire blade surface was found to be able to prevent ice accretion on most of the blade surface, some minor “ice crowns” were still observed to accrete near the blade tip. The hybrid IPS design was demonstrated to keep the entire blade surface ice-free under all the icing conditions with substantially less power consumption (i.e., [Formula: see text] power saving), rendering it a compelling UAV propeller icing mitigation strategy.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Samad, Abdallah; Dhulipalla, Anvesh; Hu, Hui (, American Institute of Aeronautics and Astronautics)Free, publicly-accessible full text available January 3, 2026
-
Valentin, Carlos A; Sista, Harsha; Kumar, Amrit; Samad, Abdallah; Hu, Haiyang; Hu, Hui (, American Institute of Aeronautics and Astronautics)Free, publicly-accessible full text available January 3, 2026
An official website of the United States government
